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In quartz crystal microbalance studies of the friction between an adsorbed monolayer film and a metallic
substrate, the films are observed to slide relative to the substrate under inertial forces of order 10−14 dyn per
film atom, a force much smaller than all existing theoretical estimates of the force that surface defects are
capable of exerting on the film. We argue that defect potentials with a range comparable to an atomic spacing
or more will produce a pinning force below the inertial force.
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Quartz crystal microbalance �QCM� studies of monolay-
ers of molecules on metallic substrates �1� provide detailed
information about friction at the atomic level. The QCM con-
sists of a quartz oscillator of frequency �106 Hz. Monolayer
films adsorbed on the metallic surface of the quartz crystal
oscillator are found to slip with respect to the surface during
a period of the oscillator. Small changes observed in the
frequency and in the associated Q factor allow us to gauge
the friction between monolayer and substrate. The amount of
dissipation generated under most conditions implies that slid-
ing motion of more than a lattice constant occurs during a
period of the QCM.

For film atom mass m�10−22 g, appropriate for xenon
atoms, QCM frequency ��107 rad /s and amplitude A
�100Ao, which are appropriate parameters for a QCM ex-
periment, the inertial force m�2A is only about 10−14 dyn
per film atom. Calculations of pinning of a monolayer film
by defects, based on both perturbation theory �2� and mo-
lecular dynamic simulations �3�, which gives a pinning force
due to defects of at least 10−11 dyn per film atom, which
already includes collective pinning effects �4�, imply that this
inertial force per atom due to oscillations of the substrate
should not be sufficiently strong to depin the film.

Since the interaction of the film with a single defect is a
periodic function of displacement of the film relative to the
defect, it can be expanded in a Fourier series. Since for any
smooth potential the Fourier coefficients fall off quite rapidly
with increasing wave vector, it is argued that, even when the
ratio of the film lattice spacing to the range of the potential is
of order 1, the product of the magnitude of the smallest re-
ciprocal lattice vector with the range of the potential, the
argument of the Fourier transform, is sufficiently large to
make the Fourier coefficient quite small. As a consequence,
the net force on the film due to a single defect is found to be
considerably smaller than the force that a defect would exert
on a single atom if it were not part of the film by a sufficient
amount to allow the inertial force to exceed the net pinning
force due to the defects. In most treatments of an elastic
medium interacting with a disordered potential �4�, including
Ref. �3�, the range of the defect potential is assumed to be

smaller than a film lattice spacing, so that it can interact with
only one film atom at a time. Step and facet edges and grain
boundaries clearly extend a number of lattice spacings along
the length of the defect, and a vacancy extends more than a
lattice constant because neighboring atoms displace toward
the missing atom. The Larkin length �4�, found from Ref. �3�,
which represents the length over which the film is able to
distort, is long compared to a defect width.

Consider the potential energy of a rigid film of atoms
interacting with a single defect potential �Rv�R+�r�, where
v�R+�r� is the potential energy due to the defect of an atom
located at the point R+�r in the film, �r represents a dis-
placement of the film relative to the potential, and R is an
atomic position in the periodic lattice of the film. Since this
quantity is a periodic function of �r with the periodicity of
the film lattice, it can be expressed as a Fourier series �6� in
the coordinates in the plane parallel to the interface,

�
R

v�R + �r� = �
G

v̄�G�eiG·�r �1�

where the Fourier coefficient v̄�G�=�−1�d2r e−iG·rv�r�,
where � is the unit cell area and G is a reciprocal lattice
vector of the film. The integral is taken over the film unit
cell. The z coordinate of the atom �z is the direction normal
to the film� is assumed to always take on its equilibrium
value as the atom moves along the film �i.e., in the x-y
plane�. This assumption is certainly valid for the slow-speed
sliding motion of the film over the surface. For line defects,
such as step and facet edges and grain boundaries, v�r� will
vary quite slowly as a function of r along the length of the
line defect �i.e., the distance over which the defect is rela-
tively straight�. As a consequence, we shall see that the Fou-
rier coefficients v̄�G� are likely to be quite small for general
directions of G, such that G has a component along the
length of the defect sufficiently large compared with 2� di-
vided by the length of the defect, a condition that is easy to
satisfy for any line defect long compared to a film lattice
constant. The Fourier coefficients will also be very small for
defects such as vacancies which are localized around a point
on the substrate.

Numerical potentials commonly used to model defects �5�
all possess discontinuities in either the potential or its deriva-
tives, either because these potential functions are constructed*Deceased.
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from piecewise continuous functions or because they are ob-
tained using interpolation schemes, which generally have
discontinuous derivatives. The Fourier transform of such a
function falls to zero quite slowly as a function of wave
vector, whereas the smooth function that it approximates, in
contrast, must have a Fourier transform that falls to zero
quite rapidly with increasing wave vector.

Since there do not exist smooth potential functions that
precisely describe the defects, let us illustrate this effect by
studying some simple smooth potentials, which qualitatively
describe the defects and which drop off reasonably rapidly at
large distances, in order to develop a picture of what one
expects for defect potentials with a range comparable to a
lattice spacing or larger. Let us consider two-dimensional
Gaussian and Lorentzian potentials, which represent two
extremes, as the Gaussian falls to zero very rapidly at
large distances while the Lorentzian falls off relatively
slowly �as is evidenced by the fact that its second moment
is infinite�. For an anisotropic Gaussian defect potential
v�r�=−Ve−��x / b1�2+�y / b2�2�, where b1 and b2 are the range
parameters, we obtain, for a triangular lattice, v̄�G�=

−2V��b1b2 / �3�1/2a2�e−�Gx
2b1

2/4+Gy
2b2

2/4�. �Again, the x and y de-
pendence of v�r�, where r= �x ,y�, assumes that z is always
set equal to its equilibrium value for all values of �x ,y�.�
For the two-dimensional Lorentzian potential v�r�=−V�1
+ �x /b1�2+ �y /b2�2�−1, v̄�G� on the right-hand side of Eq. �1�
is equal to −�4�b1b2 /a2�3�1/2�VK0�Q�, where Q= �Gx

2b1
2

+Gy
2b2

2�1/2 and K0�Q� is the spherical Hankel function of the
first kind with an imaginary argument �7�, whose large-
argument asymptotic form is K0�Q���2 /�Q�1/2e−Q. These
forms can be used to model a line defect which runs along
the x axis, if we take b1�b2, with b1 representing the dis-
tance along the defect length that one must travel in order to
reach a point at which the relatively straight section of the
defect ends �e.g., because it changes directions there�, and b2
represents the width of the defect potential perpendicular to
the direction of the line defect. We will assume the film’s
crystallographic axes and sliding direction to be at arbitrary
angles with respect to the x and y axes. If we wish to model
localized defects, such as vacancies or interstitials, we set
b1=b2. Physically, the potential resulting from a line defect
results in the case of a step, for instance, primarily from the
fact that when a film atom lies against the side of the step, it
is in contact both with atoms in the part of the substrate just
below it and with atoms making up the wall of the step,
whereas at all other locations it interacts only with atoms
below it. There is an implicit assumption here that the film is
sufficiently stiff so that the atoms belonging to the film will
be able to be pulled across a step without being caught by the
hard core repulsion with the substrate atoms that make up the
step, so that the pinning comes about purely from the attrac-
tive potential between film and surface atoms. This becomes
a problem only when there is a high density of steps oriented
at arbitrary angles with respect to each other. For other line
defects, such as facet edges, for which the topology of the
surface is much more gentle, the present model is clearly
applicable without any additional assumptions. In the case of
a localized defect, such as a vacancy, the defect potential
results from the change in the substrate potential resulting

from the fact that an atom is missing from the substrate and
from the fact that neighboring atoms displace toward the
location of the missing atom. The negative gradient of Eq.
�1� with respect to �r gives a force on the film whose am-
plitude is approximately 	Gv̄�G ,z�	, since if v̄ falls off rap-
idly with increasing G, the smallest G terms in the Fourier
series dominate, where G is one of the smallest reciprocal
lattice vectors. The maximum force on the film for the
Gaussian defect potential for b1=b2=b=1.23a is 0.979
�10−7V /b whereas for b1=b2=b=0.5a it is 0.0248V /b. The
corresponding value for the maximum force for the two-
dimensional Lorentzian potential is 0.00349V /b for b1=b2
=b=1.23a and 0.0729V /b for b1=b2=b=0.5a. The former
estimate is about two orders of magnitude smaller than the
maximum possible force that these model potentials can ex-
ert on a single film atom, which is 0.429V /b for the Gaussian
and 0.5V /b for the Lorentzian. According to the estimates of
the pinning force given in Ref. �3�, this reduction of the
defect force is of sufficient magnitude to suggest that the
magnitude of the defect force can be reduced below that of
the inertial force.

In order to illustrate numerically the high sensitivity of
the pinning force on the range of the defect potential, con-
sider a rigid two-dimensional simple square lattice sliding in
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FIG. 1. Total force due to a Gaussian potential acting on a rigid
lattice of atoms of spacing a is plotted as a function of the displace-
ment of the film s for b=1.236 067 978a in �a� and 0.834 334 9 in
�b�.
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the potential −Ve−r2/b2
. The force on the lattice due to this

potential is plotted as a function of the sliding distances in
Fig. 1�a� for b=1.236067986a and in Fig. 1�b� for b
=0.834 334 9a. The amplitude of the force on the film is
clearly considerably smaller in Fig. 1�a� than in Fig. 1�b�.

For line defects, the effects can be even more dramatic.
For example, for a line defect along the x axis, it is reason-
able to assume that b1 is a number of lattice spacings long,
and hence considerably longer than a film lattice spacing.
Hence, for virtually all orientations of the film axes,
	Gxb1	�1, and hence we can see that for the two-
dimensional Gaussian and Lorentzian potentials discussed in
the last paragraph, their Fourier coefficients will be ex-
tremely small. Therefore, we see from Eq. �2� that the de-
pendence of the interaction of the potential with the film on
�r will be extremely small compared to values for b1=b2
quoted in the last paragraph, implying that extremely small
forces act on the film.

Even if the film is pinned with a pinning force greater
than the inertial force, at zero temperature, we will see now
that at nonzero temperature, lattice vibrations can depin it. At
a given instant of time, a lattice vibration of wave vector q
will add a term A cos�q · �r+R�−�t� to R in Eq. �1�, where
A is the amplitude �assumed to be much smaller than a lat-
tice constant a�, � is the frequency of the vibrational mode,
and t is the time. Then, if v is expanded in a Fourier series,
Eq. �1� becomes

�
R

N−1�
k

v̄�k�eik·�R+�r�eik·A cos�q·�r+R�−�t�, �2�

where N is the number of atoms in the film. When the second
exponential is expanded in Bessel functions, Eq. �2� becomes

N−1�
R

�
k

v̄�k��
n=0

�

inJn�k · A�e�ik−nq�·�R+�r�e−in�t, �3�

which when summed over R becomes

�
G

�
n

inJn��G − nq� · A�v̄�G − nq�ei�G·�r−n�t�. �4�

For the n=1 term, which should be a good approximation for
the small values of 	�G−nq� ·A	 characteristic of lattice vi-
brations, we find that v̄�G−q ,z� for the Gaussian potential
now contains a term e−	G − q	2b2/2, which is comparable to or
larger than e−G2b2/2. As the former term oscillates in time for
a lattice vibration, this term produces an oscillating term in
the force on the film, which can be larger in magnitude than
the force on the film that would occur if there were no vi-
brations �i.e., the n=0 term in Eq. �4��, implying that, at
nonzero temperatures, the film will not be pinned by the
defects because the film is pushed out of its total potential
minimum by this oscillating force.
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FIG. 2. Total force due to a Gaussian potential acting on a rigid
lattice of atoms of spacing a is plotted as a function of the displace-
ment of the chain s in the lower-amplitude curve for b
=1.236 067 978a. The total force acting on a modulated lattice is
shown in the higher-amplitude curve.
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FIG. 3. Film sliding velocity found by molecular dynamics
simulations of a xenon film on a silver substrate as a function of the
external applied force per atom. The velocity is in units of 	 / t0 and
the force is in units of 
 /	 �where 	 and 
 are the length and energy
parameters of the Lennard-Jones potential and t0 is the time unit of
the simulation, �m	2 /
�1/2, where m is the film atom mass. �a�
shows the results of the run done with b=1.25a and �b� shows a run
done with 0.b=0.493a.
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In order to illustrate this effect numerically, consider a
stiff two-dimensional square lattice of atoms of lattice con-
stant a interacting with a Gaussian potential −Ve−r2/b2

, where
r is the distance from the center of the potential. We choose
the range parameter of the potential, b=1.236 067 978a. The
position of an atom in the lattice is then displaced by an
amount x due to a lattice vibration with polarization in the x
direction, where the position of a film atom is �xn ,ym�
= �na ,ma� with n and m integers, to simulate the effect of
relatively short-wavelength vibrations. The modulation rep-
resents the lattice vibration at one instant of time. Here � is
taken to be equal to 1.64b. The total force acting on the
lattice is again plotted as a function of s for this case in Fig.
2 �the higher-amplitude curve�. The total force acting on the
lattice was found to be about twice as large for the modu-
lated as for the unmodulated lattice. In this example, a static
modulation was used. For a modulation due to actual ther-
mally activated phonons, the modulation oscillates quite rap-
idly in time, resulting in a rapidly oscillating force, which
overcomes any weak static pinning force due to the average
interaction of the defect potential with the lattice. The effect
of the oscillations in time of the modulation can be illus-
trated by adding a phase to the argument of the cosine in the
above expression for the modulation, equal to �t, where � is
the phonon frequency and t is the time. Thus, even if the
inertial force is not large enough to depin a film without
lattice vibrations, the oscillating force resulting from the lat-
tice vibrations may depin it at sufficiently high temperature.
One might even speculate that zero-point oscillations of the
film might depin it at zero temperature �8�.

Let us now repeat the molecular dynamics calculations of
Ref. �3�, but with a longer-range potential for point defects.
The results are shown in Fig. 3. When we switch b from the
value of about half a lattice constant used in Ref. �3� to 1.25
lattice constants, the threshold force for sliding drops from
about 0.0005
 /	 where 
 and 	 are defined in the caption to
Fig. 3� to effectively zero, consistent with the results found
earlier in this paper.

In conclusion, we have proposed a mechanism that may
explain why defects, which must certainly be present on
even the smoothest surfaces, might not prevent a stiff mono-
layer film from sliding under the extremely weak inertial
forces that occur in a quartz microbalance experiment. What
we have shown is that, if the defect potential has a range of
a little more than one film lattice spacing, the resultant force
on the film due to a single defect is a few orders of magni-
tude smaller than the maximum force that a defect can exert
on a single film atom. Although we have only considered
defects in the substrate, the arguments used here apply
equally well to defects in the film, as long as the defects in
both the film and substrate are sufficiently dilute, so that they
will not interact with each other too often. We have also
argued that, even if the pinning force due to defects is still
greater than the inertial force, lattice vibrations can produce a
rapidly oscillating force at each defect that will depin the
film.
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